METHOD #: 330.4	Approved for NPDES (Issued 1978)	
TITLE:	Chlorine, Total Residual (Titrimetric, DPD-FAS)	
ANALYTE:	CAS # Cl Chlorine 7782-50-5	
INSTRUMENTATION:	Titration	
STORET No.	50060	

- 1.0 Scope and Application
 - 1.1 The N,N-diethyl-p-phenylene diamine (DPD) ferrous ammonium sulfate (FAS) titration method is applicable to natural and treated waters at concentrations above 0.1 mg/L Cl
- 2.0 Summary of Method
 - 2.1 Chlorine (hypochlorite ion, hypochlorous acid) and chloramines stoichiometrically liberate iodine from potassium iodide at pH 4 or less
 - 2.2 The iodine is titrated with FAS using DPD as the indicator
 - 2.3 The results are calculated as mg/L Cl even though the actual measurement is of total oxidizing power because chlorine is the dominant oxidizing agent present
- 3.0 Interferences
 - 3.1 Bromine, bromamine and iodine are interferences which are normally present in insignificant amounts
 - 3.2 Oxidized manganese interferes but can be corrected by subtraction after performing a titration in the presence of sodium arsenite (NaAsO₂)
 - 3.3 Copper interferes but is accounted for (up to approximately 10 mg/L copper) by incorporation of EDTA. The EDTA also retards deterioration of DPD due to oxidation and completely suppresses dissolved oxygen errors by preventing trace metal catalysis
 - 3.4 Turbidity and color may make the endpoint difficult to detect. Practice runs with spiked samples may be necessary
- 4.0 Apparatus
 - 4.1 Standard laboratory glassware is used. A microburet, 0-2 mL or 0-10 ml, depending on the concentration range expected, is used
- 5.0 Reagents
 - 5.1 Phosphate buffer solution: Dissolve 24 g anhydrous disodium hydrogen phosphate, Na₂HPO₄, and 46 g anhydrous potassium dihydrogen phosphate, KH₂PO₄, in distilled water. Dissolve 800 mg. disodium ethylenediamine tetraacetate dihydrate in 100 mL distilled water. Combine these two solutions

and dilute to 1 liter with distilled water. Add 20 mg. $HgCl_2$ as a preservative

- 5.2 N,N-Diethyl-p-phenylenediamine (DPD) indicator solution: Dissolve 1 g DPD oxalate or 1.5 g p-amino-N,N-diethylaniline sulfate in chlorine free distilled water containing 8 mL of $1 + 3 H_2SO_4$ and 200 mg disodium ethylenediamine tetraacetate dihydrate. Dilute to 1 liter, store in a colored, glass-stoppered bottle. Discard when discolored. The buffer and indicator sulfate are available as a combined reagent in stable powder form.
 - CAUTION: The oxalate is toxic, avoid ingestion
- 5.3 Standard ferrous ammonium sulfate (FAS) titrant: Dissolve 1.106g Mohr's salt $Fe(NH_4)_2$ (SO $_4)_2 \cdot 6H_2O$, in distilled water containing 1 mL of 1 + 3 $H_2SO_4(5.4)$ and make up to 1 liter with freshly boiled and cooled distilled water. Stable for one month. Check with titration by standard potassium dichomate (5.5). The FAS titrant is equivalent to 100 ug Cl/1.00 mL.
- 5.4 Sulfuric acid solution (1 + 3): Slowly add one part of H_2SO_4 (sp. gr. 1.84) to three parts of distilled water
- 5.5 Potassium dichromate (0.1000N): Dissolve 4.904 g potassium dichromate $(K_2Cr_2O_7)$ in distilled water and dilute to 1 liter
- 5.6 Potassium Iodide, KI Crystals
- 5.7 Sodium Arsenite Solution: Place 500 mg of sodium arsenite (NaAsO₂) in a flask and dilute to 100 mL with distilled water.
- 6.0 Procedure
 - 6.1 This procedure gives a convenient direct reading (mL titrant = mg/L Cl) up to 4 mg/L. An aliquot should be diluted to 100 mL if higher concentrations are present
 - 6.2 Place 5 mL of phosphate buffer (5.1) in a titration flask.
 - 6.3 Add 5 mL of DPD indicator (5.2).
 - 6.4 Add approximately 1 g of KI (5.6) on a scoop.
 - 6.5 Add 100 mL of sample.
 - 6.6 Wait 2 minutes.
 - 6.7 Titrate with FAS (5.3) until the red color is discharged. Record the volume of titrant used.
 - 6.8 If oxidized manganese is present
 - 6.8.1 Place 5 mL of phosphate buffer (5.1) in a titration flask.
 - 6.8.2 Add one small crystal of potassium iodide (5.6).
 - 6.8.3 Add 0.5 mL of sodium arsenite solution (5.7).
 - 6.8.4 Add 100 mL of sample. Mix.
 - 6.8.5 Add 5 mL DPD indicator (5.2). Mix.
 - 6.8.6 Titrate with FAS (5.3) until the red color is discharged. Record the volume of titrant used.
- 7.0 Calculations
 - 7.1 The mL of FAS titrant is equal to the mg/L Cl. If oxidized manganese was present, subtract the amount of titrant used in 6.8.6 from the amount of titrant used in 6.7 to obtain the mg/L Cl.
- 8.0 Precision and Accuracy

8.1 Nineteen laboratories analyzed prepared samples of 0.64 and 1.83 mg/L Cl. The relative standard deviations were 19.2 and 9.4% respectively and the relative errors were 8.1 and 4.3% respectively In a single operator single laboratory situation the following results were obtained.

Sample Matrix	Average mg/L	Stand. Dev ±mg/L	Rel. Stnd. Dev %	
Distilled Water(a)	0.34	0.02	5.6	
	0.65	0.003	0.5	
	3.45	0.02	0.5	
Drinking Water	0.98	0.01	1.2	
River Water	0.79	0.01	1.4	
Domestic Sewage	1.08	0.02	1.8	
Raw Sewage	0.79	0.03	3.3	

(a) Three replicates for distilled water. Seven replicates for other samples.

For four samples the results were compared to the iodometric titration as a means of obtaining a relative accuracy.

	Iodometric	DPD	
Sample	Titration	FAS Titration	
Matrix	mg/L	mg/L	% Recovery
Drinking Water	0.91	0.98	107.7
River Water	0.73	0.79	108.2
Domestic Sewage	1.20	1.08	90.0
Raw Sewage	0.75	0.79	105.3

Bibliography

- 1 Standard Methods for the Examination of Water and Wastewater, 14th Ed. Page 329, Method 409E, "DPD Ferrous Titrimetic Method" (1975).
- 2 Bender, D. F., "Comparison of Methods for the Determination of Total Available Residual Chlorine in Various Sample Matrices", EPA Report-600/4-78-019.